
Link Prediction on Evolving Data using Matrix and Tensor Factorizations

Evrim Acar
Informatics and Decision Sciences

Sandia National Laboratories
Livermore, CA 94551-9159

eacarat@sandia.gov

Daniel M. Dunlavy
Computer Science & Informatics

Sandia National Laboratories
Albuquerque, NM 87123-1318

dmdunla@sandia.gov

Tamara G. Kolda
Informatics and Decision Sciences

Sandia National Laboratories
Livermore, CA 94551-9159

tgkolda@sandia.gov

Abstract—The data in many disciplines such as social net-
works, web analysis, etc. is link-based, and the link structure
can be exploited for many different data mining tasks. In this
paper, we consider the problem of temporal link prediction:
Given link data for time periods 1 through T , can we predict
the links in time period T+1? Specifically, we look at bipartite
graphs changing over time and consider matrix- and tensor-
based methods for predicting links. We present a weight-based
method for collapsing multi-year data into a single matrix. We
show how the well-known Katz method for link prediction can
be extended to bipartite graphs and, moreover, approximated in
a scalable way using a truncated singular value decomposition.
Using a CANDECOMP/PARAFAC tensor decomposition of the
data, we illustrate the usefulness of exploiting the natural three-
dimensional structure of temporal link data. Through several
numerical experiments, we demonstrate that both matrix-
and tensor-based techniques are effective for temporal link
prediction despite the inherent difficulty of the problem.

Keywords-link mining, link prediction, evolution, tensor fac-
torization, CANDECOMP, PARAFAC

I. INTRODUCTION

The data in different analysis applications such as social
networks, web analysis, and collaborative filtering consists
of relationships, which can be considered as links, between
objects. For instance, two people may be linked to each other
if they exchange emails or phone calls. These relationships
can be modeled as a graph, where nodes correspond to the
data objects (e.g., people) and edges correspond to the links
(e.g., a phone call was made between two people). The link
structure of the resulting graph can be exploited to detect
underlying groups of objects, predict missing links, rank
objects, and handle many other tasks [1].

Dynamic interactions over time introduce another dimen-
sion to the challenge of mining and predicting link structure.
Here we consider the task of link prediction in time. Given
link data for T time periods, can we predict the relationships
at time T+1? This problem has been considered in a variety
of contexts [2], [3], [4]. Collaborative filtering is also a
related task, where the objective is to predict interest of users
to objects (movies, books, music) based on the interests of
similar users [5], [6]. The temporal link prediction problem
is different from missing link prediction, which has no
temporal aspect and where the goal is to predict missing

connections in order to describe a more complete picture of
the overall link structure in the data [7].

Time-evolving link data can be organized as a third-order
tensor, or multi-dimensional array. In the simplest case, we
can define a tensor Z of size M ×N × T such that

Z(i, j, t) =

{
1 if object i links to object j at time t,

0 otherwise.

It is also possible to use weights to indicate the strength of
the links. The matrix slice of Z corresponding to time t is
represented by Zt. The goal is to predict the links at time
T + 1 by analyzing the link structure of Z.

We consider both matrix- and tensor-based methods for
link prediction. For the matrix-based methods, we col-
lapse the data into a single matrix by summing (with and
without weights) the matrices corresponding to the time
slices. As a baseline, we consider a low-rank approximation
as produced by a truncated singular value decomposition
(TSVD). Next, we consider the Katz method [8] (extended
to bipartite graphs), which has proven to be highly ac-
curate in previous work on link prediction [9], [3], [10];
however, it is not always clear how to make the method
scalable. Therefore, we present a novel scalable technique
for computing approximate Katz scores based on a truncated
spectral decomposition (TKatz). For the tensor-based meth-
ods, we consider the CANDECOMP/PARAFAC (CP) tensor
decomposition [11], [12], which does not collapse the data
but instead retains its natural three-dimensional structure.
Tensor factorizations are higher-order extensions of matrix
factorizations that capture the underlying patterns in multi-
way data sets and have proved to be successful in diverse
disciplines including chemometrics, neuroscience and social
network analysis [13], [14]. Moreover, CP yields a highly
interpretable factorization that includes a time dimension.

There are many possible applications for link prediction,
such as predicting the web pages a web surfer may visit
on a given day based on past browsing history, the places
that a traveler may fly to in a given month, or the patterns
of computer network traffic. As an example application for
link prediction, we consider computer science conference
publication data with a goal of predicting which authors
will publish at which conferences in year T + 1 given the
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publication data for the previous T years. In this case, we
assume we have M authors and N conferences. All of the
methods produce scores for each (i, j) author-conference
pair for a total of MN prediction scores for year T +1. For
large values of M or N , computing all possible scores is
impractical due to the large memory requirements of storing
all MN scores. However, we note that it is possible to easily
compute subsets of the scores. For example, these methods
can answer specific questions such as “Who is most likely
to publish at ICDM next year?” or “Where is Abigail Sellen
most likely to publish next year?” using only O(M + N)
memory. This is how we envision link prediction methods
being used in practice.

The main contributions of this paper can be summarized
as follows: 1) Weighted methods for collapsing temporal
data into a matrix are shown to outperform straight summa-
tion (inspired by the results in [15]). 2) Katz is extended
to the case of bipartite graphs and its relationship to the
matrix SVD is derived. 3) Using the truncated SVD, we
devise a novel scalable method for calculating a “truncated”
Katz score. 4) The CP tensor decomposition is applied to
temporal data and its interpretability is demonstrated with
several examples. 5) Seven different matrix- and tensor-
based methods are compared on DBLP bibliometric data in
terms of link prediction performance and relative expense.

II. MATRIX TECHNIQUES

We consider different matrix techniques by collapsing the
matrices over time into a single matrix. In §II-A, we present
two techniques (unweighted and weighted) for combining
the multi-year data into a single matrix. In §II-B, we present
the technique of using a truncated SVD to generate link
scores. In §II-C, we extend the Katz method to bipartite
graphs and show how it can be computed efficiently using
a low-rank approximation.

A. Collapsing the data
Suppose that our data set consists of matrices Z1 through

ZT of size M × N and the goal is to predict ZT+1. The
most straightforward way to collapse that data into a single
M ×N matrix X is to sum all the entries across time, i.e.,

X(i, j) =
T∑

t=1

Zt(i, j). (1)

We call this the collapsed tensor (CT) because it collapses
(via a sum) the entries of the tensor Z along the time mode.
This is similar to the approach in [3].

We propose an alternative approach to collapsing the
tensor data, motivated by [15], where the link structure
is damped backward in time according to the following
formula:

X(i, j) =
T∑

t=1

(1− θ)T−t Zt(i, j). (2)

The parameter θ ∈ (0, 1) can be chosen by the user or
according to experiments on various training data sets. We
call this the collapsed weighted tensor (CWT) because the
slices in the time mode are weighted in the sum. This gives
greater weight to more recent links.

The numerical results in §IV demonstrate improved per-
formance using CWT versus CT.

B. Truncated SVD
One of the methods compared in this paper is a low-

rank approximation of the matrix X produced by (1) or (2).
Specifically, suppose that the compact SVD of X is given
by

X = UΣVT, (3)

where R is the rank of X, U and V are orthogonal matrices
of sizes M×R and N×R, respectively, and Σ is a diagonal
matrix of singular values σ1 > σ2 > · · · > σR > 0. It is
well known that the best rank-K approximation of X is then
given by the truncated SVD

X ≈ UKΣKVK , (4)

where UK and VK comprise the first K columns of U and
V and ΣK is the K ×K principal submatrix of Σ.

A matrix of scores for predicting future links can then be
calculated as

S = UKΣKVK . (5)

We call these the Truncated SVD (TSVD) scores. Low-rank
approximations based on the matrix SVD have proven to
be an effective technique in many data applications—latent
semantic indexing [16] is one such example. This technique
is called “low-rank approximation: matrix entry” in [3].

C. Katz
The Katz measure [8] is arguably one of the best link

predictors available because it has been shown to outperform
many other methods [3]. Suppose that we have an undirected
graph G(V,E) on P = |V | nodes. Then the Katz score of
a potential link between nodes i and j is given by

Ŝ(i, j) =
+∞∑

!=1

β!|path(!)
i,j |, (6)

where |path(!)
i,j | is the number of paths of length $ between

nodes i and j, and β > 0 is a user-defined parameter.
The Katz scores for all pairs of nodes can be expressed

in matrix terms as follows. Let X̂ be the P × P symmetric
adjacency matrix of the graph. Then the scores are given by

Ŝ =
+∞∑

!=1

β!X̂
!
= (I− βX̂)−1 − I. (7)

If the graph under consideration has weighted edges, X̂ is
replaced by a weighted adjacency matrix.
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We address two problems with the formulation of the
Katz measure. First, the method is not scalable because
it requires the inversion of a P × P matrix at a cost of
O(P 3) operations. We show that we can replace X̂ by a
low-rank approximation in order to compute the Katz scores
more efficiently. Second, the method is only applicable to
square symmetric matrices representing undirected graphs.
We show that it can also be applied to our situation: a
rectangular matrix representing a bipartite graph.

1) Truncated Katz: Assume X̂ has rank R ≤ P . Let the
eigendecomposition of X̂ be given by

X̂ = WΛWT, (8)

where W is a P ×P orthogonal matrix and Λ is a diagonal
matrix with |λ1| ≥| λ2| ≥ · · · ≥ |λR| > λR+1 = · · · =
λP = 0. Then the Katz scores in (7) become

Ŝ = (I− βWΛWT)−1 − I

= W
[
(I− βΛ)−1 − I

]
WT = WΓ̂WT,

where Γ̂ is a P × P diagonal matrix with diagonal entries

γ̂p =
1

1− βλp
− 1 for p = 1, . . . , P.

This shows a close relationship between the Katz measure
and the eigendecomposition and gives some hint as to how
to incorporate a low-rank approximation. The best rank-L
approximation of X̂ is given by replacing Λ in (8) with a
matrix ΛL where all but the L largest magnitude diagonal
entries are set to zero. The mathematics carries through as
above, and the end result is that the Katz scores based on
the rank-L approximation are

Ŝ = WLΓ̂LW
T
L

where Γ̂L is the L× L principal submatrix of Γ̂, and WL

is the P × L matrix containing the first L columns of W.
Since it is possible to construct a rank-L approximation

of the adjacency matrix in O(L|E|) operations (using an
Arnoldi or Lanczos technique [17]), this technique can be
applied to large-scale problems at a relatively low cost. We
note that in [3], Katz is applied to a low-rank approxima-
tion of the adjacency matrix which is equivalent to what
we discuss here, but its computation is not discussed —
specifically, the fact that it can be computed efficiently
via the formula above is not mentioned. Thus, we assume
that calculation was done directly on the dense low-rank
approximation matrix given by

X̂L = WLΛLW
T
L.

We contract to the approach of Wang et al. [18] who
discuss an approximate Katz measure given by truncating the
sum in (6) to the first L (they recommend L = 4) terms, i.e.,
Ŝ =

∑4
!=1 β

!X̂
!
; the main drawback of this approach is the

power matrices may be dense, depending on the connectivity
of the graph.

2) Bipartite Katz & Truncated Bipartite Katz: Our prob-
lem is different than what we have discussed so far because
we are considering a bipartite graph, represented by a
weighted adjacency matrix from (1) or (2). This can be
considered as a graph on P = M + N nodes where the
weighted adjacency matrix is given by

X̂ =

[
0 X
XT 0

]
.

If X is rank R and its SVD is given as in (3), then the
eigenvectors and eigenvectors of X̂ are given by

W =

[
1√
2
U − 1√

2
U

1√
2
V 1√

2
V

]
and Λ =

[
Σ 0
0 −Σ

]
.

Note that the eigenvalues in Λ are not sorted by magnitude
and the rank of X̄ is 2R. The square matrix of Katz scores
is given by

Ŝ =

[
0 UΓVT

VΓUT 0

]
,

where Γ is a diagonal matrix with entries

γp =
1

1− βσp
− 1 for p = 1, . . . , R. (9)

The link scores for the bipartite graph can be extracted and
are given by

S = UΓVT. (10)

We call these the Katz scores.
We can replace X by its best rank-K approximation as

in (4), and the resulting Katz scores then become

S = UKΓKVT
K , (11)

where ΓK is the K ×K principal submatrix of Γ. We call
these the Truncated Katz (TKatz) scores. It is interesting to
note that TKatz is very similar to using TSVD except that the
diagonal weights have been changed. Related methods for
scaling have also been proposed in the area of information
retrieval (e.g., [19], [20]) where exponential scaling of
singular values led to improved performance.

D. Computational Complexity and Memory
Computing a sparse rank-K TSVD via an Arnoldi or

Lanczos method requires O(nnz(X)) work per iteration
where nnz(X) is the number of nonzeros in the adjacency
matrix X, which is equal to the number of edges in the
bipartite graph. The number of iterations is typically a small
multiple of K but cannot be known in advance. The storage
of the factorization requires only K(M + N + 1) space
for the singular values and two factor matrices. Because
TKatz is based on the TSVD, it requires the same amount of
computation and storage for a rank-K approximation. The
only difference is that TKatz stores ΓK rather than ΣK .
Katz, on the other hand, requires O(M2N +MN2 +N3)
operations to compute (7) if M > N . Furthermore, it stores
all of the scores explicitly, using O(MN) storage.
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III. TENSOR TECHNIQUES

The data set consisting of matrices Z1 through ZT is
three-way, so this lends itself to a multi-dimensional inter-
pretation. One of the most common and useful tensor models
is CP [11], [12]; see also reviews [13], [14]. The advantage
of a three-way model is that we can explicitly model the
time dimension and have no need to collapse the data as
discussed in §II-A.

A. CP Tensor Model
Given a three-way tensor Z of size M ×N × T , its K-

component CP decomposition is given by

Z ≈
K∑

k=1

λk ak ◦ bk ◦ ck. (12)

Here the symbol ◦ denotes the outer product,1 λk ∈ R+,
ak ∈ RM , bk ∈ RN , and ck ∈ RT for k = 1, . . . ,K.
Each summand (λk ak ◦ bk ◦ ck) is called a component,
and the individual vectors are called factors. We assume
‖ak ‖ = ‖bk ‖ = ‖ ck ‖ = 1 and therefore λk contains
the scalar weight of the kth component. The CP tensor
decomposition can be considered an analogue of the SVD
because it decomposes a tensor as a sum of rank-one tensors
just as the SVD decomposes a matrix as a sum of rank-one
matrices Nevertheless, there are also important differences
between them. The columns of U and V are orthogonal in
the SVD while there is no orthogonality constraint in the
CP model. Despite the CP model’s lack of orthogonality,
Kruskal [14] has shown that it is unique, up to permutation
and scaling, under mild conditions.

We compute the CP model via an Alternating Least
Squares (ALS) approach using the Tensor Toolbox for
Matlab [21].

B. CP Scoring
We make use of the components extracted by the CP

model to assign scores to each pair (i, j) according to their
likelihood of linking in the future. The outer product of ak
and bk, i.e., akbT

k quantifies the relationship between object
pairs in component k. The components have temporally
different profiles in the vectors ck; e.g., they may have
increasing, decreasing, or steady profiles. Therefore, we
scale akb

T
k so that objects occurring together at components

with increasing trends are assigned higher similarity scores
than the objects occurring together at components with
decreasing trends. In short, we define the similarity score
for objects i and j using a K-component CP model in (12)
as the (i, j) entry of the following matrix:

S =
K∑

k=1

γkλkakb
T
k , where γk =

T∑

t=T−2

ck(t). (13)

1A three way outer product is defined as follows: X = a ◦ b ◦ c means
X(i, j, k) = a(i)b(j)c(k).

We have used a simple scaling approach here. However, we
can make better use of temporal profiles by using time series
models such as the Holt-Winters method [22], which models
the trends and seasonality in the data, to forecast the time
points in near future. This is a future research topic.

C. Computational Complexity and Memory
The computational complexity of CP is similar to TSVD.

It is proportional to Knnz(Z)+K2(M +N +T ) work per
iteration. Since we normally assume nnz(Z) ) M+N+T ,
the computational complexity is O(nnz(Z)). As with TSVD,
we cannot predict the number of iterations in advance. The
storage required for CP is K(M +N +T +1), for the three
factor matrices and the scalar λk values.

IV. EXPERIMENTS

We use the DBLP data set2 to assess the performance
of various link predictors discussed in §II and §III. All
experiments were performed using Matlab 7.6 on a Linux
Workstation (RedHat 5.2) with 2 Quad-Core Intel Xeon
3.0GHz processors and 32GB RAM.

A. Data
At the time the DBLP data was downloaded for this

work, it contained publications from 1936 through the end of
2007. We only consider publications of type inproceedings
between 1991 and 20073.

The data is organized as a third-order tensor Z of size M×
N × T . We let C(i, j, t) denote the total number of papers
by author i at conference j in year t. In order to decrease
the effect of large numbers of publications, we preprocess
the data so that

Z(i, j, t) =

{
1 + log(C(i, j, t)) if C(i, j, t) > 0,

0 otherwise.

Using a sliding window approach, we divide the data into
seven training/test sets such that each training set contains
T = 10 years and the corresponding test set contains the
following 11th year. Table I shows the size and density of
the training and testing sets. We only keep those authors
that have at least 10 publications (i.e., an average of one per
year) in the training period, and each test set contains only
the authors and conferences available in the corresponding
training set.

B. Interpretation of CP
Before addressing the link prediction problem, we first

discuss how to use the CP model for exploratory analysis of
the temporal data. The primary advantage of the CP model
is its interpretability, as illustrated in Figure 1, which con-
tains three example components from the 50-component CP

2http://www.informatik.uni-trier.de/∼ley/db/index.html
3The publications between 1936 and 1990 comprise only 6% of publi-

cations of type inproceedings.
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Test # Authors # Conf. # Train # Test # New Test
Year Links (%) Links (%) Links (%)
2001 7108 1103 113k (.14) 13k (.16) 5k (.06)
2002 8368 1211 135k (.13) 16k (.16) 7k (.07)
2003 9929 1342 162k (.12) 20k (.15) 9k (.07)
2004 11836 1491 197k (.11) 27k (.16) 13k (.07)
2005 14487 1654 245k (.10) 35k (.15) 17k (.07)
2006 17811 1806 308k (.10) 40k (.13) 19k (.06)
2007 21328 1934 377k (.09) 41k (.10) 20k (.05)

Table I: Data on training and test sets formed from the DBLP
data set. The training data consists of data from the ten years
preceding the test year.

model of the tensor representing publications from 1991 to
2000. The factor ak captures a certain group of authors while
bk extracts the conferences, where the authors captured by
ak publish. Finally, ck corresponds to the temporal signature
and shows what kind of time pattern the publication history
of those authors at those conferences follows. Therefore, the
CP model can address the link prediction problem well by
capturing the evolution of the links between objects using
the factors in the time mode.

Figure 1a shows the third component with authors in the
top plot (ak), conferences in the middle (bk), and time
on the bottom (ck). The highest scoring conferences are
DAC, ICCAD and ICCD, which are related conferences on
computer design. Many authors publish in these conferences
between 1991 and 2000, but the top are Vincentelli, Brayton,
and others listed in the caption. This author/conference
combination has a peak in the early 1990s and starts to
decline in mid-’90s. Note that the author and conference
scores are mostly positive. Figure 1b shows another example
component, which actually has very similar conferences
to the component discussed above. The leading authors,
however, are different. Further, the time profile is different
with an increasing trend after the mid-’90s. Figure 1c shows
a component that detects related conferences that take place
only in even years. Again we see that the components are
primarily positive. A nice feature of the CP model is that
it does not have any constraints (like orthogonality in the
SVD) that artificially impose a need for negative entries in
the components.

C. Methods and Parameter Selection
The goal of a link predictor in this study is to predict

whether the ith author is going to publish at the jth confer-
ence during the test year. Therefore, each nonzero entry in
the test set is treated as 1, i.e., a positive link, regardless
of the actual number of publications; otherwise, it is 0
indicating that there is no link between the corresponding
author-conference pair.

The common parameter for all link predictors, except
Katz-CT/CWT, is the number of components, K. In our
experiments, instead of using a specific value of K, which
cannot be determined systematically, we use an ensemble

(a) Factors from component 3: Top authors are Alberto L.
Sangiovanni Vincentelli, Robert K. Brayton, Sudhakar M. Reddy,
and Irith Pomeranz. Top conferences are DAC, ICCAD, and
ICCD.

(b) Factors from component 4: Top authors are Miodrag Potkon-
jak, Massoud Pedram, Jason Cong, and Andrew B. Kahng. Top
conferences are DAC, ICCAD, and ASPDAC.

(c) Factors from component 46: Top authors are Franz Baader,
Henri Prade, Didier Dubois, and Bernhard Nebel. Top confer-
ences are ECAI and KR.

Figure 1: Examples from 50-component CP model of pub-
lications from 1991 to 2000.
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approach. Let SK denote the matrix of scores computed
for K = 10, 20, ...100. Then the matrix of ensemble
scores, S, used for link prediction is calculated as S =∑

K∈{10,20,...100}
SK

‖SK ‖F
. In addition to the number of

components, the parameter β used in the Katz scores in
(10) and (11) needs to be determined. We use β = 0.001,
which was chosen such that γp > 0 for all p = 1, . . . , R in
(9) for the data in our experiments. We have observed that if
γp < 0 then the scores contain entries with large magnitudes
but negative values, which degrades the performance of Katz
measure. Finally, θ is the parameter used for weighting slices
while forming the CWT in (2). We set θ = 0.2 according to
preliminary tests on the training data sets.

D. Link Prediction Results
Two different experimental set-ups are used to evaluate

the performance of the methods.
• Predicting All Links: The first approach compares the

methods in terms of how well they predict positive links
in the test set.

• Predicting New Links: The second approach addresses
a more challenging problem, i.e., how well the methods
predict the links that have not been previously seen at
any time in the training set.

As an evaluation metric for link prediction performance,
we use the area under the receiver operating characteristic
curve (AUC) because it is viewed as a robust measure in
the presence of imbalance [23], which is important since
less than 0.2% of all possible links exist in our testing data.
Figure 2 shows the performance of each link predictor in
terms of AUC when predicting all links (blue bars) and
new links (red bars). As expected, the AUC values are
much lower for the new links. Among all methods, the
best performing method in terms of AUC is Katz-CWT.
Further, CWT is consistently better than the corresponding
CT methods, which shows that giving more weight to the
data in recent years improves link prediction.

In Figure 3, we show the ROC (receiver operating charac-
teristic) curves; for the purposes of clarity, we omit the CT
results. When predicting all links, Figure 3a shows that all
methods perform similarly initially, but Katz-CWT is best
as the false positive rate increases. TKatz-CWT and TSVD-
CWT are only slightly worse than Katz-CWT. Finally, CP
starts having false-positives earlier than the other methods.
Figure 3b shows the behavior for just the new links. In this
case, the relative performance of the algorithms is mostly
unchanged.

In order to understand the behavior of different link
predictors better, we also compute how many correct links
(true positives) are in the first top 1000 scores. Table II
shows that CP, TSVD-CWT, TKatz-CWT and Katz-CWT
achieve close to 75% accuracy over all links. The accuracy
of the methods goes down to 10% when we remove all
previously seen links from the test set. Note that the best

Figure 2: Average link prediction performance of each
method across all seven training/test set pairs (black bars
show absolute range).

(a) Prediction of all links in the test sets.

(b) Prediction of only new links in the test sets.

Figure 3: Average ROC curves showing the performance of
link prediction methods across all training/test sets.

methods in terms of AUC, i.e., Katz-CT and Katz-CWT,
perform worse than CP, TSVD-CWT and TKatz-CWT for
predicting new links. We also observe that CP is among the
best methods when we look at the top predictions even if it
starts giving false-positives earlier than other methods.
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Test CP TSVD TSVD TKatz TKatz Katz Katz
Year -CT -CWT -CT -CWT -CT -CWT

All Links
2001 671 617 685 611 684 629 705
2002 668 660 674 656 672 668 713
2003 723 697 743 693 748 708 755
2004 783 726 777 724 773 723 780
2005 755 716 776 718 770 706 780
2006 807 729 801 731 796 706 798
2007 721 681 755 682 753 656 731
Mean 733 689 744 688 742 685 752

New Links
2001 87 80 104 79 107 55 77
2002 97 84 124 88 124 86 104
2003 78 80 96 82 102 67 75
2004 99 79 105 85 105 70 82
2005 116 89 117 90 117 67 89
2006 91 77 110 75 109 69 92
2007 83 71 95 73 99 49 67
Mean 93 80 107 82 109 66 84

Table II: Correct predictions in top 1000 scores.

The TSVD and TKatz methods are quite fast. Average
timings across all training sets are TSVD-CT: 60.6 sec.;
TSVD-CWT: 61.4 sec.; TKatz-CT: 123.9 sec. and TKatz-
CWT: 126.8 sec. CP takes 1304.1 sec., and the Katz-CT and
Katz-CWT requires 1623.1 and 2081.4 sec., respectively.

V. RELATED WORK

Getoor and Diehl [1] present a survey of link mining tasks,
including node classification, group detection, and numerous
other tasks including link prediction. Sharan and Neville
[15] consider the goal of node classification for temporal-
relational data, suggesting the idea of a “summary graph”
of weighted snapshots in time which we have incorporated
into this work.

The seminal work of Liben-Nowell and Kleinberg [3]
examines numerous methods for link prediction on co-
authorship networks in arXiv bibliometric data. However,
temporal information was unused (e.g., as in [15]) except for
splitting the data The proportion of new links ranged from
0.1–0.5% and is thus comparable to what we see in our data
(0.05–0.07%). According to Liben-Nowell and Kleinberg,
Katz and its variants are among the best link predictors; this
observation has been supported by other work as well [9],
[18]. We note that Wang, Satuluri and Parthasarathy [18] use
the truncated sum approximate Katz measure discussed in
§II-C and recommend AUC as one evaluation measure for
link prediction because it does not require any arbitrary cut-
off. Rattigan and Jensen [24] contend that the link mining
problem is too difficult, in part because the proportion of
actual links is very small compared to the number of possible
links; specifically, they consider co-author relationships in
DBLP data and observe that the proportion of new links
is less than 0.01%. (Although we also use DBLP data, we
consider author-conference links which has 0.05% or more
new links.)

Another way to approach link prediction is to treat it as a
straightforward classification problem by computing features
for possible links and using a state-of-the-art classification
engine like support vector machines. Al Hasan et al. [2] use
this approach in the task of author-author link prediction.
They randomly pick equal sized sets of linked and unlinked
pairs of authors. They compute features such as keyword
similarity, neighbor similarity, shortest path, etc. However,
it would likely be computationally intractable to use such a
method for computing all possible links due to the size of the
problem and imbalance between linked and unlinked pairs
of authors. Clauset, Moore, and Newman [7] predict links
(or anomalies) using Monte-Carlo sampling on all possible
dendrogram models of a graph.

Modeling the time evolution of graphs has been consid-
ered, e.g., by Sakar et al. [4] who create time-evolving co-
occurrence models that map entities into an evolving latent
space. Tong et al. [25] also compute centrality measures
on time evolving bipartite graphs by aggregating adjacency
matrices over time in similar approaches to those in §II-A.

Link prediction is also related to the task of collaborative
filtering. In the Netflix contest, for example, Bell and Koren
[26] consider the “binary view of the data” as important
as the ratings themselves. In other words, it is important to
first predict who is likely to rate what before focusing on
the ratings. This was a specific task in KDD Cup 2007 [5].

Tensor factorizations have been previously applied in
web link analysis [27] and also in social networks for the
analysis of chatroom [28] and email communications [29],
[30]. In these applications tensor factorizations are used
as exploratory analysis tools and do not address the link
prediction problem.

VI. CONCLUSIONS

In this paper, we explore several matrix- and tensor-
based approaches to solving the link prediction problem. We
consider author-conference relationships in bibliometric data
as an example application, but this has many applications
in other domains such as predicting Internet traffic, flight
reservations, and more. For the matrix methods, our results
show that using a weighted collapse function to combine
multiple time slices is superior to simple summation. We
also show how to extend Katz to bipartite graphs and to
efficiently compute an approximation to Katz based on
the truncated SVD. However, none of the matrix-based
methods fully leverages and exposes the temporal signa-
tures in the data. We present an alternative: the CP tensor
factorizations. Temporal information can be incorporated
into the CP tensor-based link prediction analysis to gain
a perspective not available when computing using matrix-
based approaches.

We have considered these methods in terms of their AUC
scores and the number of correct predictions in the top
1000 scoring links. In both cases, we can see that all the
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methods do quite well. Katz has the best AUC but is not
computationally tractable for large-scale problems; however,
the other methods are not far behind. Moreover, TKatz-
CWT is best for predicting new links. Our numerical results
also show that the tensor-based methods are competitive
with the matrix-based methods in terms of link prediction
performance. The current drawback of the tensor-based
approach is that there is typically a higher computational
cost incurred, but the software for these methods is quite
new and will no doubt be improved in the near future.
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